### Motive Madness

There are two papers by A. B. Goncharov, namely

1. Multiple polylogarithms and mixed Tate motives

2. Periods and mixed motives,

which are referred to by Brown in his paper on multiple zeta values and period integrals, as an excellent study of the punctured sphere moduli M(0,4) $\simeq \mathbb{P}^1 \backslash \{ 0,1, \infty \}$ and its finite covers based on roots of unity.

Hmmm. Maybe this post should be called M Theory Lesson 18. These topics (motives, number theory, gluon amplitudes etc.) are getting awfully mixed up! No, never mind. I'd better get back to reading, I guess. I must be crazy. It's a gorgeous day outside...

1. Multiple polylogarithms and mixed Tate motives

2. Periods and mixed motives,

which are referred to by Brown in his paper on multiple zeta values and period integrals, as an excellent study of the punctured sphere moduli M(0,4) $\simeq \mathbb{P}^1 \backslash \{ 0,1, \infty \}$ and its finite covers based on roots of unity.

Hmmm. Maybe this post should be called M Theory Lesson 18. These topics (motives, number theory, gluon amplitudes etc.) are getting awfully mixed up! No, never mind. I'd better get back to reading, I guess. I must be crazy. It's a gorgeous day outside...

## 0 Comments:

Post a Comment

<< Home