Arcadian Functor

occasional meanderings in physics' brave new world

My Photo
Name:
Location: New Zealand

Marni D. Sheppeard

Monday, September 17, 2007

M Theory Lesson 103

Changing topics somewhat: in a classical topos a natural number object enables Peano's axioms for arithmetic to hold in the internal logic. This object N is equipped with a successor function s:NN and a zero object 0:1N. But quantum mechanical logic doesn't belong in a classical topos. In the category Vect of vector spaces, for example, the terminal object 1 might be replaced by the number field K and the subobject classifier by the qubit object KK.

So what happens to arithmetic? Now Vect is actually a higher dimensional structure, being a symmetric monoidal category. Thus we expect to do a lot more decategorifying before we can count, and this process could take us through a topos like Set in which arithmetic makes sense. For example, how do we count the dimension of a (finite dimensional) vector space? We usually take a basis set and then use arithmetic in Set to count its elements. The logical analogue of dimension in Vect would really be an arrow KK which picks a one dimensional space from K. Thus numbers really look like quantum states, and the so-called collapse of the wavefunction would be a simple categorical transition of numbers between different logics.

1 Comments:

Blogger L. Riofrio said...

It gets better still. The numbers resemble quantum states. It could lead us to re-define "Collapse of the wavefunction."

September 18, 2007 5:04 AM  

Post a Comment

<< Home