Arcadian Functor

occasional meanderings in physics' brave new world

My Photo
Name:
Location: New Zealand

Marni D. Sheppeard

Thursday, July 17, 2008

M Theory Lesson 208

Now consider the 6×6 Kasteleyn matrix given by This matrix is the unique such matrix with eigenvalues (1)+(2)=(231) and (1)-(2)=(312), the elements of S3. It satisfies the relation K2=K+[0,(312)-(231)], using the same notation as the last post. This comes close to being idempotent, but the real idempotents are of course Carl's particle operators. A graph for this K looks like the tiling by hexagons and triangles, which is a rectification of the hexagonal tiling of the plane. Observe that the six edges of the top left (1) form a hexagon within this graph, as do the other circulant components. The graph can be factored into two Hamiltonian circuits of length 12.

0 Comments:

Post a Comment

<< Home