M Theory Lesson 236
On any diagonal matrix of (square root) mass eigenvalues, one instance of the squared Fourier transform acts as a simple permutation,
and so clearly the fourth power of the transform is the identity. In other words, the discrete Fourier transform is like a square root of a basic 2-cycle or Pauli operator $\sigma_{X}$. The other choices for $F$ involve braiding elements.
What would a square root of a braid crossing look like? Geometrically, considering the element of $B_{2}$ as a map between bars with two points, the square root is, instead of a rotation of $\pi$ for the bar, a rotation of $\pi/2$. This configuration lines up the points on the bottom bar so that the strands appear to come together in a diagram that usually represents Hopf algebraic multiplication in a category, only now the points are still separated in the third dimension.
and so clearly the fourth power of the transform is the identity. In other words, the discrete Fourier transform is like a square root of a basic 2-cycle or Pauli operator $\sigma_{X}$. The other choices for $F$ involve braiding elements.What would a square root of a braid crossing look like? Geometrically, considering the element of $B_{2}$ as a map between bars with two points, the square root is, instead of a rotation of $\pi$ for the bar, a rotation of $\pi/2$. This configuration lines up the points on the bottom bar so that the strands appear to come together in a diagram that usually represents Hopf algebraic multiplication in a category, only now the points are still separated in the third dimension.





0 Comments:
Post a Comment
<< Home